SCHOOL OF ENGINEERING Fakultät für Technik Hochschule Pforzheim

Syllabus **BWI10008 Mathematik 1**

Prof. Dr. Viola Galler / Dr. Isabelle Heinemeyer Wintersemester 2024/2025

Niveau	Bachelor		
Credits	5		
sws	4		
Workload	150 Stunden		
Voraussetzungen	Mathematische Schulkenntnisse, die zum Hochschulstudium berechtigen		
Uhrzeit	s. LSF		
Raum	s. LSF		
Starttermin	s. LSF		
Lehrende(r)	Name	Prof. Dr. Viola Galler (WI / MT, WI / ID)	
		Dr. Isabelle Heinemeyer (WI / IM, WI / CEE, WI / IMo)	
	Büro	T1.5.25 (Galler)	
		T2.2.13 (Heinemeyer)	
	Virtuelles Büro	WI Besprechungsraum	
		Unterraum "Prof. Galler" bzw. "Heinemeyer, Isabelle"	
	Kolloquium	Donnerstag, 09:45 – 11:15 Uhr (Galler)	
		Donnerstag 13:30 – 15:00 Uhr (Heinemeyer)	
	Telefon	07231 28-6597 (Galler)	
		07231 28-6293 (Heinemeyer)	
	Email	viola.galler@hs-pforzheim.de (bevorzugte Kommunikationsform)	
		<u>isabelle.heinemeyer@hs-pforzheim.de</u> (bevorzugte Kommunikationsform)	

Kurzbeschreibung

Gegenstand dieser Lehrveranstaltung sind die mathematischen Grundbegriffe der linearen Algebra wie Vektoren, Matrizen und Determinanten sowie zugehörige Rechenregeln.

Ebenso sind Gegenstand dieser Lehrveranstaltung die Grundlagen der Differential- und Integralrechnung für Funktionen einer Variablen. Dazu gehören auch die Betrachtung wichtiger Funktionsklassen wie etwa Polynome, gebrochen-rationale Funktionen sowie trigonometrische Funktionen und deren Umkehrfunktionen.

Gliederung der Veranstaltung

- Vektorrechnung (Skalarprodukt, Betrag, Winkel, lineare Unabhängigkeit, Orthonormalisierung, Vektorprodukt)
- Matrizen- und Determinantenrechnung (Rechenregeln, Spur, Rang, Determinante, Cramer-Regel, Inverse, Eigenwerte und Eigenvektoren, Definitheit)
- Differentialrechnung von Funktionen mit einer Variablen
- Integralrechnung von Funktionen mit einer Variablen

Lernziele der Veranstaltung und deren Beitrag zu den Programmzielen

Programmziele		Lernziele der Veranstaltung	
	Nach Abschluss des Programms sind die Studierenden in der Lage,	Nach Abschluss der Veranstaltung sind die Studierenden in der Lage,	
1	Fachwissen		
1.5	ihr solides Grundwissen in Mathematik nachzuweisen.	Vektor- und Matrizenrechnungen durchzuführen sowie Differenzial- und Integralrechnungen für Funktionen mit einer Variablen.	
2	Digitale Kompetenzen		
3	Kritisches Denken und analytische Fähigkeiten		
4	Ethisches Bewusstsein und Nachhaltigkeit		
5	Kommunikations- und Teamfähigkeit		
6	Internationalisierung		

Lehr- und Lernkonzept

Die Veranstaltung ist im Wesentlichen als Vorlesung konzipiert. Die Studierenden erfahren zunächst das Ziel der Lehrveranstaltung und empfohlene Begleitlektüre. Sie lernen dann sukzessive die einzelnen Begriffe und Rechenmethoden kennen. Jeder Begriff und jede Methode werden durch Beispiele veranschaulicht. Die Studierenden werden ermuntert, Fragen sofort zu stellen.

Eine kontinuierliche Mitarbeit ist unabdingbare Voraussetzung für den Lernerfolg.

Gleichzeitig wird dadurch auch der Aufwand für die Klausurvorbereitung über das gesamte Semester besser verteilt. In einem wöchentlichen Tutorium werden zusätzlich Aufgaben aus dem behandelten Stoff der Vorlesung gerechnet und so das Verständnis der Begriffe und Methoden gefestigt.

Der Lehrende steht jederzeit als Gesprächspartner zur Verfügung und gibt Unterstützung und Ratschläge. Die Kommunikation erfolgt am Besten im persönlichen Gespräch.

Literatur und Kursmaterialien

Gohout, W.: Mathematik für Wirtschaft und Technik. 2.Aufl., Oldenbourg Wissenschaftsverlag, München 2011.

Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler Band 1, 15. Aufl., Springer Vieweg, Wiesbaden 2018

Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler Band 2, 14. Aufl., Springer Vieweg, Wiesbaden 2015

Leistungsnachweis

Der Leistungsnachweis erfolgt durch das Bestehen einer 90-minütigen Klausur. In dieser Klausur sind 90 Punkte erreichbar. Die Hälfte davon reicht zum Bestehen der Klausur aus.

'Sehr gut' bedeutet herausragende Leistung, die weit über dem Durchschnitt liegt. 'Gut' bedeutet gute Leistung, die über dem Durchschnitt liegt.

'Befriedigend' bedeutet durchschnittliche Leistung, welche durchaus Mängel aufweist, jedoch den Anforderungen grundsätzlich entspricht.

'Ausreichend' bedeutet unterdurchschnittliche Leistung mit auffälligen Mängeln. 'Mangelhaft' bedeutet nicht akzeptable Leistung, welche den Anforderungen nicht mehr entspricht.

Zeitplan

Termin	Voraussetzung	Veranstaltung
1		Einführung in die Vorlesung, Einführung in den Inhalt
2	Vorangegangen Vorlesungseinheiten	grundlegende Vektorbegriffe, Betrag, Winkel
3	Vorangegangen Vorlesungseinheiten	Linearkombination, Lineare Unabhängigkeit, Rang
4	Vorangegangen Vorlesungseinheiten	Orthonormierung
5	Vorangegangen Vorlesungseinheiten	Vektorprodukt und Anwendungen
6	Vorangegangen Vorlesungseinheiten	Matrizenarten, Matrizenrechnung, Beispiele
7	Vorangegangen Vorlesungseinheiten	Spur, Rang, elementare Matrizenoperationen
8	Vorangegangen Vorlesungseinheiten	Determinanten, Regel von Sarrus, Entwicklungssätze,
9	Vorangegangen Vorlesungseinheiten	Spatprodukt, Cramer-Regel, Inverse
10	Vorangegangen Vorlesungseinheiten	Eigenwerte und Eigenvektoren,
11	Vorangegangen Vorlesungseinheiten	Beispiele zu Eigenwerten und Eigenvektoren, Definitheit
12	Vorangegangen Vorlesungseinheiten	Horner Schema, Grenzwerte von Funktionen,
13	Vorangegangen Vorlesungseinheiten	Stetigkeit, Differenzierbarkeit, Ableitungen
14	Vorangegangen Vorlesungseinheiten	Ableitungsregeln, Steigung, Extrema,
15	Vorangegangen Vorlesungseinheiten	Krümmung, Wendepunkte, Anwendungen zur Optimierung,
16	Vorangegangen Vorlesungseinheiten	Unbestimmte Ausdrücke, Regel von l'Hospital,
17	Vorangegangen Vorlesungseinheiten	Numerische Nullstellenbestimmung, Elastizität

Vorangegangen Vorlesungseinheiten	Unbestimmtes Integral, einfache Regeln
Vorangegangen Vorlesungseinheiten	partielle Integration, Substitution
Vorangegangen Vorlesungseinheiten	Bestimmtes Integral, einfache Regeln, Hauptsatz
Vorangegangen Vorlesungseinheiten	Bestimmtes Integral, partielle Integration, Substitution
Vorangegangen Vorlesungseinheiten	Uneigentliche Integrale, Partialbruchzerlegung
Vorangegangen Vorlesungseinheiten	Partialbruchzerlegung
Vorangegangen Vorlesungseinheiten	Anwendungen der Integralrechnung: Bogenlänge, Mantelfläche
Vorangegangen Vorlesungseinheiten	Numerische Integration, trigonometrische und verwandte Funktionen
Vorangegangen Vorlesungseinheiten	Übungen
Vorangegangen Vorlesungseinheiten	Übungen
Vorangegangen Vorlesungseinheiten	Übungen
	Vorangegangen Vorlesungseinheiten Vorangegangen Vorlesungseinheiten

Akademische Integrität und studentische Verantwortung

Der Lehrende begrüßt es, wenn sich die Studierenden über die Inhalte der Lehrveranstaltung austauschen. Wenn Probleme und Fragen auftreten, können Mitstudenten einen wertvollen Beitrag zur Steigerung des eigenen Verständnisses leisten. In der empfohlenen Gruppenarbeit sollte jeder Teilnehmer im gleichen Ausmaß aktiv werden und beispielsweise Aufgaben vorrechnen und erklären.

Verhaltensregeln für Studierende

- Bereiten Sie den Unterrichtsstoff unbedingt nach, um ihn bald zu verstehen!
- Besuchen Sie die Vorlesung und arbeiten Sie aktiv mit!
- Arbeiten Sie kooperativ und kontinuierlich in einer selbst gewählten Kleingruppe von etwa zwei bis vier Studierenden!

Link zu den Verhaltensregeln für online-Lehre

Selbstverständnis als Lehrende

Ich möchte meinen Teil dazu beitragen, dass Sie einen erfolgreichen Lernfortschritt realisieren und ein Verständnis für die praktische Bedeutung der Lerninhalte bekommen. Verständnisfragen sollten möglichst gleich während des Unterrichts gestellt werden. Ebenso sind Ihre Kommentare, die dem Lernfortschritt aller dienen, herzlich willkommen. Mein Ziel ist es, dass Sie die Veranstaltung erfolgreich abschließen können, allerdings liegt der wesentliche Teil der Arbeit bei Ihnen.

Ihr Lernen ist mir ein Anliegen, dabei möchte ich Sie unterstützen. Falls Sie mit der Lehrveranstaltung irgendwelche Probleme haben oder sich Fragen ergeben, sollten Sie mich ansprechen bzw. eine E-Mail senden. Ich werde zeitnah antworten und falls notwendig einen Termin mit Ihnen vereinbaren.

Sonstige Informationen

Sprache:

Deutsch

Lernergebnisse:

Die Studierenden

- kennen die Begriffe der linearen Algebra wie etwa Vektoren, Matrizen, Determinanten und die damit verwandten Konzepte
- beherrschen das Rechnen mit diesen Größen
- kennen die grundlegenden Anwendungen dieser Größen.
- können Funktionen differenzieren und integrieren
- können Grenzwerte berechnen
- kennen wichtige mathematischen Funktionen
- können Funktionen einer Variablen optimieren ohne Restriktionen